
Journal of Computational Physics 229 (2010) 3214–3236
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A First-Passage Kinetic Monte Carlo algorithm for complex
diffusion–reaction systems

Aleksandar Donev a,*, Vasily V. Bulatov a, Tomas Oppelstrup a,b, George H. Gilmer a,
Babak Sadigh a, Malvin H. Kalos a

a Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
b Royal Institute of Technology (KTH), Stockholm S-10044, Sweden

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 May 2009
Received in revised form 16 December 2009
Accepted 29 December 2009
Available online 7 January 2010

Keywords:
Kinetic Monte Carlo
First-passage
Diffusion–reaction
Asynchronous algorithms
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2009.12.038

* Corresponding author. Tel.: (510) 486 5782; fax
E-mail address: aleks.donev@gmail.com (A. Done
We develop an asynchronous event-driven First-Passage Kinetic Monte Carlo (FPKMC)
algorithm for continuous time and space systems involving multiple diffusing and reacting
species of spherical particles in two and three dimensions. The FPKMC algorithm presented
here is based on the method introduced in Oppelstrup et al. [10] and is implemented in a
robust and flexible framework. Unlike standard KMC algorithms such as the n-fold algo-
rithm, FPKMC is most efficient at low densities where it replaces the many small hops
needed for reactants to find each other with large first-passage hops sampled from exact
time-dependent Green’s functions, without sacrificing accuracy. We describe in detail the
key components of the algorithm, including the event-loop and the sampling of first-pas-
sage probability distributions, and demonstrate the accuracy of the new method. We apply
the FPKMC algorithm to the challenging problem of simulation of long-term irradiation of
metals, relevant to the performance and aging of nuclear materials in current and future
nuclear power plants. The problem of radiation damage spans many decades of time-
scales, from picosecond spikes caused by primary cascades, to years of slow damage
annealing and microstructure evolution. Our implementation of the FPKMC algorithm
has been able to simulate the irradiation of a metal sample for durations that are orders
of magnitude longer than any previous simulations using the standard Object KMC or more
recent asynchronous algorithms.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Models involving random walks are widely applied in science, engineering, medicine and finance. Of particular interest
are diffusion–reaction systems in which multiple walkers walk simultaneously and independently and some significant
events take place when two or more walkers find each other in space, or collide. Examples include formation and growth
of aggregates of colloidal particles in suspensions, kinetics of aerosols in meteorology, diffusive phase transformations in sol-
ids [1], surface diffusion during crystal growth from vapor [2,3], defect evolution in solids [4,5], multi-particle diffusion-lim-
ited aggregation in physics, diffusion-controlled reactions in chemistry and biochemistry [6–8], population dynamics,
quantum physics [9], and risk assessment and pricing models in finance, to name a few. Numerical simulations of such
processes often utilize various flavors of the Monte Carlo method.
. All rights reserved.

: (510) 486 6900.
v).

http://dx.doi.org/10.1016/j.jcp.2009.12.038
mailto:aleks.donev@gmail.com
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236 3215
A novel diffusion Kinetic Monte Carlo (KMC) algorithm for simulating diffusion–reaction systems in one, two, and three
dimensions was first proposed in Ref. [10] and described in detail in Ref. [11]. The algorithm cures the notorious ineffi-
ciency of standard KMC algorithms [4] at low densities of the reacting and diffusing particles: when diffusion is simulated
via a sequence of small hops, many such hops are needed to bring reactants together and the standard algorithms are
unable to progress over sufficiently long time scales. The essential idea behind the new First Passage Kinetic Monte Carlo
(FPKMC) algorithm is to replace the long sequences of small hops with large super-hops sampled from an exact Green’s
function derived for a simpler auxiliary problem in which the diffusing particles are spatially isolated (protected) from
each other and thus diffuse independently. The resulting algorithm is not only fast even at low densities, but it is also
exact (modulo numerical precision) and does not, in principle, introduce approximations employed in other accelerated
algorithms, such as discretizing continuum diffusion into a sequence of hops [4] or neglecting less-probable reactions
[12,7].

Reference [11] focuses on the basic ideas behind the new FPKMC method and illustrates its application in the context of
simple models in which identical or nearly identical cube-shaped particles randomly walk on a lattice or in the continuum.
Here we extend the method to more general and complex diffusion–reaction systems, such as multiple species with different
sizes and diffusion coefficients, competing reaction mechanisms, e.g. particle conversion, death and insertion, absorbing
boundary conditions, focusing on the case of continuum isotropic diffusion without advection. We give a general and formal
presentation of the FPKMC method as an event-driven asynchronous algorithm implemented for the case of additive hard
spheres in two and three dimensions. We also present algorithmic details, including pseudo-codes, for a flexible yet efficient
implementation of the FPKMC method capable of handling a variety of problems of interest, including radiation damage in
metals [12,13,5], dopant implantation [4], surface reactions [2,3], coarsening [1], (bio)chemical reaction networks [6–8], and
others. We validate the new algorithm by comparing our simulation results against the Object KMC BIGMAC code [4] for
several non-trivial test problems. We then apply the new algorithm to simulations of irradiation damage accumulation in
iron and validate the new method by comparing to results obtained using the existing object KMC code LAKIMOCA [5]. Fi-
nally, we demonstrate that the new FPKMC algorithm allows extending the time horizon of radiation damage simulations
well beyond current computational limits and to reach, for the first time, the long time-scales of material life in a nuclear
reactor (Section 5.2.3).

In the remainder of this section we specify our diffusion–reaction model and briefly discuss asynchronous event-driven
algorithms. In Section 2 we describe the core of the FPKMC algorithm, namely, the use of exact time-dependent Green’s
functions for a suitably-defined separable sub-problem. The new method is rather general and extends to a variety of
problems where diffusion plays a role, including also discrete (lattice) systems and more general types of diffusion. In
Section 3 we discuss numerical evaluation of the time-dependent Green’s functions for the case of hard spheres. Section 4
gives further details, including detailed pseudocodes for key components of the FPKMC algorithm. In Section 5 we present
numerical validation of the algorithm along with some performance figures, and finally, in Section 6 we offer a few conclud-
ing remarks.
1.1. Model representation

Consider a simulation of the time evolution of a collection of N diffusing reactive particles in d-dimensions. For simplicity,
we will focus on the case of hard spheres of fixed radius diffusing in a homogeneous medium. In the absence of reactions or
surfaces and assuming a particle started in some specific point r0 at time 0, the probability cðr; tÞ of finding the same particle
in position r at time t is the solution to the time-dependent diffusion equation
@tc ¼ D$2c and cðr;0Þ ¼ dðr � r0Þ; ð1Þ
where D is the particle diffusion coefficient.
At any point in time, the state of the system is characterized by its configuration Q ¼ ðq1; . . . ;qNÞ. The number of particles

N may itself vary with time. Each particle i can possess an arbitrary number of attributes ai in addition to the position of its
centroid ri;qi ¼ ðri;aiÞ. These attributes include a species 1 6 si 6 Ns, a radius Ri, a diffusion coefficient Di, as well as other
problem-specific attributes such as charge, mass, etc. Some attributes may be shared by all particles of a given species,
for example, all particles of a given species may have the same diffusion coefficient.

The symmetric reaction table Rab of size NsðNs þ 1Þ=2 specifies the type of two-particle reaction that occurs when particles
A and B of species a and b collide. In particular, Rab can specify that particles of species a and b do not interact with each
other. Examples of possible reactions are annihilation Aþ B ! 0, chemical reaction Aþ B ! C, including the special case
of absorption Aþ B ! A, coalescence Aþ B ! AB, and reflection Aþ B ! Aþ B. The decay table Da

k specifies an arbitrary
number Na

d of possible single-particle reactions for particles of species a, assumed to occur as a Poisson process with rates

Ca
k ¼ sa

k

� ��1. Examples of decay reactions are splitting A ! Bþ C, including the special case of emission A ! Aþ B, trans-
mutation A ! B, death A ! 0, and jump (kick) A ! A. The positions of any products of the single- or two-particle reac-
tions are assigned depending on the positions and attributes of the reactants, sometimes with additional random
displacements. If hard-wall boundaries are present, particles colliding with a hard wall k they may be absorbed or reflected
with certain pre-specified probabilities.

3216 A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236
The insertion rates Ba specify the rate of insertion (birth) for particles of species a per unit time per unit volume.
Typically particles are inserted randomly and uniformly inside the simulation volume. Note that in some applications it
can be necessary to insert a whole collection of particles rather than a single particle. For example, irradiation by heavy
particles – ions or neutrons – creates large displacement cascades that quickly anneal into a whole collection of point
defects and clusters.
1.2. Asynchronous event-driven algorithms

The First-Passage Kinetic Monte Carlo (FPKMC) algorithm belongs to the category of asynchronous event-driven (AED)
algorithms [14]. The algorithm is similar to the well-known event-driven molecular dynamics (EDMD) algorithm [15], with
the essential difference that in FPKMC particle dynamics is stochastic rather than deterministic [16]. Just as the hard-sphere
Molecular Dynamics, FPKMC is an exact algorithm (within numerical precision) because the two-particle problem in FPKMC
can be solved exactly. By its exactness we mean that FPKMC samples evolution trajectories of N random walkers from the
correct probability distribution, as given by the exact solution of an appropriate Master equation.

Event-driven algorithms evolve the state of the system by updating it only when certain non-trivial events occur, skipping
the time elapsed between such events as uninteresting, e.g., unchanged or analytically solvable. In the asynchronous algo-
rithms, there is a global simulation time t, typically the time when the last processed event occurred, and each particle i is
associated with a point in time ti 6 t, typically the last time it participated in an event. This is to be contrasted with synchro-
nous event-driven algorithms, where all of the particles are at the same time t, such as the n-fold (BKL) algorithm for per-
forming kinetic (dynamic) Monte Carlo simulations [17]. The classical n-fold algorithm hinges on the fact that the state of the
system does not change between the events, as is common in lattice models where particle positions are discrete. For exam-
ple, the atoms may vibrate around the lattice sites and occasionally hop to nearby sites. In the model considered here, how-
ever, the positions of the particles are continuous and continuously changing even between events.

The main types of events in FPKMC and their scheduling and processing will be described in detail in the next section. For
each particle i, the time it was last updated ti is stored along with a prediction for its impending event te

i ; pi; mi
� �

, specified via
the predicted time of occurrence (timestamp) te

i , the event partner pi, and the event qualifier (type of event) mi. When it is
clear what particle we are referring to, we will omit the subscript i for simplicity. If several different events are possible
for a given particle then the first event scheduled to occur (i.e., the one with the smallest te) is chosen. The event times
for all particles and event times for any external events are stored in a priority queue (e.g., a heap) called the event queue.
If the partner p ¼ j is another particle, then event prediction for the partner particle j is not stored in the event queue to avoid
sorting duplicate events with equal timestamps. An asynchronous simulation progresses by processing the event at the head
of the queue, scheduling new events for any affected particles, and then updating the event queue.
2. The First-Passage Kinetic Monte Carlo algorithm

A detailed description of the FPKMC algorithm, including pseudo-codes, is given in Section 4. Here we only briefly discuss
the most important components of the algorithm. Although this description is intended to be self-contained, the reader is
referred to Ref. [11] for a more intuitive introduction.

The essential idea behind the FPKMC algorithm is to break the N-body problem into a collection of independent one-body
or two-body (pair) problems that can be solved analytically. This is achieved by protecting each particle i with a protective
region Pi, Ci #Pi, where the hard core of particle i is denoted by Ci. An unprotected particle has Pi � Ci. In the case of hard

spheres1, Ci ¼ fr jRi P kr � rikg, the protective regions themselves are spheres of radius RðPÞi > Ri centered at rðPÞi . Thus, a spher-

ical particle of radius Ri can be thought of as a point particle contained inside a protective sphere of radius RðPÞi � Ri, i.e.

rðPÞi � ri

��� ��� 6 RðPÞi � Ri. In general it is not required that rðPÞi ¼ r0
i , however, making the protective sphere concentric with the par-

ticle simplifies implementation.
2.1. First-passage probability densities

If the protective region Pi of a particle i is disjoint from the protective regions of other particles, then the diffusive motion
of the particle is independent of the motion of other particles, as long as the particle is still inside its protection. The motion of
the particle inside its protection is a one-body diffusion problem that can often be solved analytically. The FPKMC algorithm
entails sampling from the following two probability distribution functions (PDFs) for a particle initially at r0 ¼ 0 at time
t ¼ 0:
1 The cube-shaped particles and protections described in Ref. [11] can be thought of as spheres but with an L1 distance metric function kDrk ¼ max16k6dDrk ,

instead of the L2 Euclidean distance kDrk ¼
ffiPd

k¼1Dr2
k

q
characteristic of spheres.

A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236 3217
1. The first-passage probability distribution J1ð~t; ~rÞ that the particle first leaves its protective region at time ~t, when it is at
position ~r. We call the time ~t the exit time and the position ~r the exit location. For a point particle, ~r is on the surface
of the protection, ~r 2 @Pi.

2. The conditional no-passage probability distribution c1ðr; tÞ that the particle is at position r 2 Pi n @Pi at a given time t, given
that it has not left its protection by time t.

These two probability distributions are the basic elements of the theory of first-passage processes [18] and are termed
hereafter the first-passage and no-passage propagators, respectively. Single-particle propagators for spherical particles inside
spherical protection regions are discussed in Section 3.1.

2.1.1. Pair propagators
In the FPKMC algorithm, the particles are protected by disjoint protective regions allowing the use of single-particle prop-

agators to evolve the system. At some point in time, however, two particles i and j will collide and thus cannot be protected
with disjoint regions. For efficient handling of collision events, nearly-colliding pairs are associated (partnered) and protected
by a pair protection region Pij. We will focus on the case when Pij ¼ Pi [Pj consists of intersecting protections around each of
the two particles, Pi \ Pj – ;. If either one of the particles leaves its protective region the pair dissociates.

Note that, for the case of additive hard spheres that we consider here, triple collisions never happen. Thus, it will always
be possible to protect two colliding particles i and j as a pair even if there is a third particle k nearby. As the simulation
time approaches the collision time, eventually i and j will be much closer to each other than to k and can thus be pair-pro-
tected with protective region Pij disjoint from Pk. For non-additive hard spheres or other types of collision rules pair pro-
tection may not be sufficient and in such cases the approximate handling of interactions discussed in Section 4.7 will be
useful.

For an associated pair of particles, in general, the FPKMC algorithm requires sampling from the following two
distributions:

1. The first-passage probability distribution J2ð~t; ~ri; ~rjÞ that at time ~t, when the particles are at positions ~ri and ~rj respectively,
one of two particles of the pair leaves its protection for the first time, or particles i and j collide and react for the first time.

2. The conditional no-passage probability distribution c2ðri; rj; tÞ for the positions of the particles at a given time t, given that
neither i nor j has left its protection, nor a collision has occurred.

We term these two distributions two-particle or pair propagators. As discussed in Ref. [11], the pair propagators allow fur-

ther factorization into two single-body propagators. The first propagator is for the difference walker rðDÞij ¼ Dri � Drj, where

the condition rðDÞij

��� ��� ¼ Ri þ Rj corresponds to a collision. The second propagator is for the center walker

rðCÞij ¼ wiDri þwjDrj, where wi and wj are appropriately-chosen weights. The protections and the propagators for the differ-
ence and center walkers are discussed in further detail in Section 3.2.

2.1.2. Hard-wall propagators
In some situations periodic boundary conditions may not be appropriate and instead hard-wall boundaries could be used

along certain directions of the simulation box. Furthermore, additional absorbing or reflecting surfaces may need to be in-
serted in the simulation volume, for example, to represent grain boundaries in a polycrystalline material. Particle and pair
protections should be disjoint from any hard-wall surfaces or boundariesW in order to ensure that single-particle and pair
propagators can be used. However, some particle i will eventually collide withW and, thus, cannot remain protected fromW
forever. Therefore, particles near a wallW are associated (paired) with the wall itself and protected with a hard-wall protec-
tion Pi that is disjoint from all other single-particle and pair protections but intersects wall W;Pi \W ¼ @PWi – ;. For such
particles, we will use of the following hard-wall propagators:

1. The first-passage probability distribution JHWð~t; ~rÞ that the particle exits its protective region or collides with the hard
wall at time ~t, when it is at position ~r.

2. The conditional no-passage probability distribution cHWðr; tÞ that the particle is at position r 2 Pi n @Pi at a given time t,
given that it has not left its protection or collided with the wall by time t.

2.2. Summary of the FPKMC algorithm

As already discussed in Section 1.2, the FPKMC algorithm processes a sequence of events in the increasing time order in an
event loop. Each event has a qualifier (type of event) and is associated with a primary particle, which may have an event part-
ner pi. In the implementation of the algorithm described here the particles can only have one partner, either another particle
forming a pair, or a hard wall. In general one can have multi-particle events and treat a group of particles together. We dis-
cuss this modification again in Section 4.7 and will report on its implementation details in future publications.

3218 A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236
Following Refs. [10,11], the core of the FPKMC algorithm entails the following generic steps:

1. Construct initial protective regions around all particles, using single-particle protections not overlapping with other pro-
tections or boundaries, pair protections for pairs of particles much closer to each other than to other particles, or hard-
wall protections for particles much closer to a boundary than to other particles.

2. Sample an exit time for each particle or pair (in the case of pairs this can mean a collision) from the corresponding first-
passage probability distribution, and make an event queue with all of the scheduled events.

3. Using the event queue, find the earliest event time and identify the corresponding particle(s). Sample the exit position(s)
from the corresponding first-passage probability distribution. If a collision occurs, take appropriate action.

4. Construct new protections for the particles propagated in Step 3. If necessary to make more space available for protection
of the propagated particle(s), sample new locations for nearby particles from the corresponding no-passage probability
distribution, and re-protect those particles as well.

5. Sample new event times for the particle(s) protected in step 4, and update the corresponding events in the event queue.
Go back to step 3.

Further details on the main event loop are given in Section 4.
In FPKMC, the most important and frequent events are first-passage propagations in which a particle or a pair reaches the

boundary of its protective region or collides. Such events are scheduled and processed by sampling from appropriate first-
passage distributions, and then processing any reactions, as appropriate. For a given set of particle starting positions, one can
choose to build protections to maximize the expectation value of the next simulated time increment. To achieve this, N par-
ticles should be protected in such a way that the expectation value for the minimal first-passage time is maximized:
2 Oth
max
Protections

E½minft1; t2; . . . ; tNg�:
Finding the optimal space partitioning that maximizes the above expectation value is a non-trivial problem of constrained
non-linear optimization. It is especially difficult to solve in the course of an asynchronous FPKMC simulation where compu-
tational cost of space re-partitioning should be balanced with the resulting benefit to the time increment. Finding the opti-
mal space partitioning is further complicated in a dynamic context, when FPKMC propagation events compete with other
stochastic processes such as particle creation, emission, destruction, etc. In the current FPKMC implementation, we use a
simpler optimality condition in which the minimum of N expected first-passage times is maximized:
max
Protections

minfEðt1Þ; Eðt2Þ; . . . ; EðtNÞg:
Obviously, the protections have to be as large as possible, with more space given to particles with higher diffusion rates. To
better quantify this requirement, let us first consider just two particles and protect them by two concentric non-overlapping
protection domains X1 and X2. The expectation of the earliest of two exit times is maximal when domains X1 and X2 touch
each other and their linear dimensions are proportional to the square roots of two diffusion coefficients

ffiffiffiffiffiffi
D1
p

and
ffiffiffiffiffiffi
D2
p

. In this
case the expected first passage times for both particles are equal. Let us now use this maximal expected exit time as a mea-
sure of distance between any two unprotected particles. If all particles are unprotected, solving for the optimal protection
amounts to finding, using the so-defined distance metric, the nearest neighbors in the whole system. If possible, one pro-
tects the nearest neighbors as a pair, otherwise, they are protected individually by non-overlapping (touching) protective
regions.

The above method, however, only optimizes protections over a single first-passage event (locally-optimal protections) and
does not necessarily maximize the expected time per event over a long sequence of events (globally-optimal protections). Spe-
cifically, following a single event, an optimal re-partitioning of the space into protective regions could be constructed, how-
ever this would require destroying multiple existing protections and thus cause multiple propagations and new event
predictions. Obviously, it is necessary to find a reasonable trade-off between re-building too many protections and giving
all of the particles sufficient room to move over sufficient distances compared to other particles.

Following the processing of an event, typically one or two particles are left unprotected. We try to protect those particles,
always starting from a chosen seed particle, with locally-optimal protections, without disturbing any other protected parti-
cles. Specifically, in our algorithm, one first finds the largest possible protection for the seed particle by performing a neigh-
bor search over all nearby protected or unprotected particles. If the limiting neighbor is protected, one can simply protect the
particle with a protection that touches the limiting protection.2 Otherwise, one recursively applies the same procedure to the
unprotected limiting neighbor. If two particles are both unprotected and are found to be mutually limiting neighbors, we at-
tempt to protect them as a pair provided they are sufficiently close. Detailed pseudocode for this procedure is given in
Section 4.5.

If the size of the single protection of the seed particle is too small, we make room for a larger protection by destroying
third-party protections. That is, if an unprotected particle gets too close to the protective region of another particle or pair,
er choices are possible here, for example, one may look at the expected or scheduled first-passage time for the limiting neighbor.

A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236 3219
that particle or pair is brought to the current point in time using the appropriate no-passage propagator. Similarly, if the seed
particle is nearly colliding with another particle but the two particles cannot be protected as a pair, we destroy any other
protections blocking pair protection. Following the destruction of other protections, we repeat the process starting from
protection of the seed particle. Instead of keeping a list of all unprotected particles we simply schedule immediate re-pro-
tection events (i.e., place them at the head of the event queue) for any particles whose protections were destroyed.

Our implementation relies on a number of input tolerances and heuristics to manage particle and pair protections. In par-
ticular, the following decisions need to be made by the algorithm and can be controlled with various input tolerances:

� When should a pair of unprotected nearest-neighbor particles be selected for pair protection, beyond the necessary con-
ditions for pair protection discussed in Section 3.2? The computationally-optimal choice here depends on the relative cost
of the single and pair propagations. We favor single protections because of their lower cost and build pair protections only
when two particles get closer to each other than some fraction of their size.

� When is it justified to unprotect a protected particle or a protected pair in order to make room for protecting an
unprotected single particle or a pair candidate? One may use a hard cutoff here, however, this introduces an artificial
length-scale and the algorithm looses some of its ability to adopt to the variations in particle density (and thus typical
sizes of the protective regions). We prefer to always destroy the most limiting protection following a first-passage
propagation.

� If two unprotected nearest-neighbor particles are not a pair candidate, how should the available space be divided among
their single protections? As described above, we split the space proportionally to the square root of the diffusion coeffi-
cients of the two particles.

� Should the size of the protective region of a single particle be limited even if there is more room available for its protection
(note that a large protection is more likely to block future protections of other particles)? We control this through an input
parameter that set the time limit Dtmax after which the protection is almost certainly going to be destroyed before the first-
passage event actually occurs, and limit the size of Pi by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DiDtmax
p

.
� Once it is determined that two nearby particles can be protected as a pair, how large should their pair protection be (of

course, respecting the minimal required size discussed in Section 3.2 and the maximal size allowed by other neighbors)?
We control this through an input target range for the parameter a defined in Section 3.2.

Intuitively, the algorithm’s performance will be optimized by giving more protective space to the particle or a small sub-
set of particles that dominate(s) the event queue, up to the point when giving more room to these fast particles no longer
increases the average time interval between subsequent events (or actually makes efficiency worse by squeezing the other
slow particles too much). In Section 4.6 we will describe a self-tuning strategy we applied in several specific situations
encountered in FPKMC simulations. While some of our strategies are relatively general, understanding of the problem at
hand helps considerably in optimizing the algorithm performance.

We conclude this section with a few additional notes on the components of the FPKMC algorithm. Whenever an event
creates new particles, a check is made to determine whether the newly inserted particle overlaps with any existing particles.
If it does, appropriate reactions are immediately processed and the overlap check is repeated until no overlap is detected.
Additionally, unlike the mobile particles, the immobile particles remain unprotected and have no partners, but other parti-
cles can have them as partners. This is particularly useful when there are large immobile particles (e.g. clusters of monomers)
that are surrounded by a dense pool of small mobile particles (e.g., monomers). The mobile particles do not affect each other
for as long as their protections do not overlap, even if they share the same immobile cluster as a partner. However, when an
event changes the configuration of the immobile cluster (e.g., it absorbs a monomer), all its partner particles are brought to
the current time and re-protected.
3. Single particle and pair propagators

In this section we describe first-passage and no-passage propagators for spherical particles. The propagators for single
particles are similar to the ones described in Ref. [11] for cube-shaped particles and are discussed here only briefly. However,
the pair propagators for two spherical particles are considerably different than those for cubical particles and are presented
in more detail.
3.1. Single particle propagators

The FPKMC algorithm requires first-passage and no-passage propagators for a single spherical particle A of radius RA with
diffusion coefficient DA, starting from an initial position r0

A at the center of a protective sphere PA of radius RPA > RA concentric
with the particle. This reduces to finding the propagators for a point. Brownian particle starting at time t ¼ 0 from the center
of a sphere with radius RPP ¼ RPA � RA. Due to the full rotational symmetry, the first-passage PDF J1ð~tÞ is a function of time
only, and the exit location on the protective sphere PA can be sampled from a uniform distribution. Similarly, the no-passage
PDF c1ðr; tÞ becomes a function of time and radial distance only, as the actual position r can be sampled from a uniform dis-
tribution on the sphere of radius r.

3220 A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236
Expressing the distances and time in reduced units, the propagators can be obtained by solving the diffusion problem for
a point Brownian particle with diffusion coefficient D ¼ 1 inside a sphere of unit radius RP

P ¼ 1,
@½rcðr; tÞ�
@t

¼ @
2½rcðr; tÞ�
@r2 ;
with the boundary condition cð1; tÞ ¼ 0 and the initial condition cðr;0Þ ¼ dðrÞ. The probability to survive up to time t, i.e. the
survival probability, is
SðtÞ ¼
Z 1

r¼0
4pr2cðr; tÞdr:
The probability distribution for the exit time, i.e. the exit probability, is
pðt > 0Þ ¼ � @SðtÞ
@t

; ð2Þ
and is used to sample the exit time ~t. The no-passage probability distribution is
c1ðr < 1; tÞ ¼ cðr; tÞ
SðtÞ : ð3Þ
Series solutions for the various probability distribution functions for the case of a point walker in a cube-shaped region were
presented in Ref. [11]. For the case of spherical particles inside spherical protection regions we focus on two useful series
expansions of the solution, one that converges quickly at short times ðt K 1=4Þ,
cðr; tÞ ¼ ð4ptÞ�
3
2
X1

m¼�1
1þ 2m

r

� �
exp �ðr þ 2mÞ2

4t

" #
ð4Þ
and another that converges quickly at long times ðt J 1=p2Þ,
cðr; tÞ ¼ 1
2r

X1
m¼1

m sinðmprÞe�m2p2t : ð5Þ
The first-passage and no-passage distributions can be sampled numerically in various ways. We use rejection sampling as
proposed in Ref. [11] and detailed in Appendix A. However, we emphasize that rejection sampling is not the only nor nec-
essarily the most efficient method for sampling the required distributions, especially if one is willing to accept some error
(which can be controlled). For example, direct tabulation and the use of lookup tables may be simpler and more efficient in
certain cases, especially when there is high symmetry in the shape of the particles and protective domains. Such implemen-
tation details are, however, orthogonal to the development of the event-driven algorithm and can be improved upon
separately.

3.2. Pair propagators

In this section we discuss particle protection and propagators used to enable collisions of pairs of particles. Consider two
spherical Brownian particles A and B of radii RA and RB and diffusion coefficients DA and DB. Each of the particles is protected
by a sphere of radii RPA=B > RA=B concentric with the initial particle positions r0

A=B. When two protective spheres overlap, i.e.,

RPA þ RPB > rAB ¼ krA � rBk, the particles can collide while diffusing within their individual protections. Sampling of particle
collisions is enabled by transforming the two-particle diffusion problem into two single-particle problems, one for the dif-
ference walker rD ¼ rA � rB and the other for the center walker rC ¼ wArA þwBrB. A collision occurs when the difference walk-
er reaches the collision radius rD ¼ krA � rBk ¼ RA þ RB. It can be shown that, with the choice wADA ¼ wBDB, the cross term
@2

@rC@rD
in the Laplacian operator vanishes which means that the six-dimensional PDF for the pair factorizes into a product

of two three-dimensional PDFs, one for each walker. The resulting center and difference walkers diffuse independently with
diffusion coefficients DD ¼ DA þ DB and DC ¼ w2

ADA þw2
BDA.

There is considerable freedom for choosing weights wA and wB and protections for the center and difference walkers. To
simplify the implementation, the center and difference walkers are each protected by spheres of radii RPD and RPC centered
around their initial positions. It turns out that choosing RPD ¼ RPC maximizes the use of space within the overlapping protec-
tive spheres of the two original particles. Furthermore, by setting DC ¼ DD the expectation values for the exit times for the

A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236 3221
difference and center walkers become similar and nearly maximal. This leads to the following optimal choice for the coor-
dinate transformation
Fig. 1.
cDðrD; t
rD ¼ rA � rB;

rC ¼

ffiffiffiffiffiffi
DB

DA

s
rA þ

ffiffiffiffiffiffi
DA

DB

s
rB:
Finally, the condition that a collision should be possible requires that RPC > d, where d ¼ rAB � RPA þ RPB
� �

is the initial inter-
particle gap. We take
RPC ¼ RPD ¼ ð2þ aÞd;
where a P �1 is a parameter in the algorithm. We find that a ¼ 1 or RPC ¼ 2d is a reasonable choice but, when there is more
room available, one can increase a up to a maximal value amax specified in the code. It can be shown that, as the difference
and center walkers propagate inside their own protections, each of the two original particles remains within a sphere of
radius
RPA=B ¼ RA=B þ ð2þ aÞd
ffiffiffiffiffiffiffiffiffi
DA=B

q ffiffiffiffiffiffi
DA
p

þ
ffiffiffiffiffiffi
DB
p

DA þ DB
:

This defines the size of the protective region around each original particle that is minimally necessary to allow pair protec-
tion, i.e., the minimal distance to the next-nearest neighbors of particles A and B which allows for pair protection.

3.2.1. The difference and center propagators
With the above coordinate transformation, the first-passage problem for the pair of original particles separates into two

independent first-passage problems for the center walker and the difference walker. The overall first-passage time ~t is the
smaller of the two first-passage times. Thus, the possible first-passage events for the pair are:

Collision when the difference walker reaches the surface rD ¼ krA � rBk ¼ RA þ RB.
Dissolution when the difference walker reaches the surface rD ¼ RPD . The center walker has not yet left PC and can be
updated using the single-point no-passage propagator c1ðDrC ;~tÞ.
Displacement when the center walker reaches the surface rC ¼ RPC . The difference walker has not yet left PD and can be
updated using a special single-point no-passage propagator cDðDrD;~tÞ (see the next section).

Because the center walker is restricted inside a spherical protection PC of radius RPC , the same FP and NP propagators de-
scribed earlier in Section 3.1 for single particles can be used for this walker.

Unlike the case of cube-shaped protections considered in Ref. [11], protection region of the difference walker for a pair of
spherical particles cannot be a sphere. Among several choices considered, in our current implementation we opt to protect
the difference walker with a cut sphere, i.e. PD ¼ frDjkDrDk < RPD and krDkP RA þ RBg, where DrD ¼ rD � r0

D. Lacking the
spherical symmetry and having more complex geometry of the first-passage surface (see Fig. 1), finding a usable analytical
solution for the propagators in this protective volume is more involved than for the cubes. Various approximations for the
distribution of exit times and locations JDð~t; ~rDÞ for cut spheres have been considered in the context of diffusion Monte Carlo
Protective region PD for the difference walker in the case of two hard disks in two dimensions. In this case PD is a cut disk (blue) and the propagator
Þ is analytically complex. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3222 A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236
[19,20]. However, the previous work used only time-averaged solutions but not the full time-dependent Green’s function
cDðrD; tÞ. In the next section we describe a practical alternative to the full analytical solution of the first-passage problem
inside the cut sphere.

3.2.2. Hopping-based propagators
Rather than trying to solve for the exact propagators for the center walker in a cut sphere, we resort to generating a ran-

dom walk through a sequence of small displacements in randomly chosen directions. In principle, restricting the hops to suf-
ficiently small displacements, such discrete walks can approximate the samples from the exact continuum distributions to
any desired accuracy. In practice, we use random walks only for particle pairs that have been brought close to collisions
through the use of exact continuum single-particle propagators. For such pairs, the walks are typically short and do not entail
high computational cost.

The time when the trajectory brings the difference walker to the boundary @PD of the cut sphere PD is taken as an approx-
imation for the first-passage time ~t and the location where the sampled walk hits the surface @PD is an approximation to ~rD.
At every hop a constant increment Dth ¼ Dr2

h=ð2DDÞ is added to the running time and the displacements along each dimen-
sion are sampled independently from a one-dimensional Gaussian probability distribution with the standard deviation Dr2

h .
Alternatively, the magnitudes of walker displacements can be kept equal to Drh while the time increments can be sampled
from the first-passage distribution J1 for the sphere of radius Drh. In the limit of small displacement length both methods
should reproduce the required first-passage probability distributions in the cut sphere.

As a practical matter, one must ensure that the path makes some progress, that is at least one hop is taken. Therefore Drh

should be smaller than some fraction (e.g., half or one third) of the inter-particle gap d. Furthermore, to ensure reasonable
accuracy the displacement Drh should be smaller than the relevant length-scales of the cut sphere PD. We set
Drh ¼ �h minðd;RA þ RBÞ, where d is the initial inter-particle gap and �h � 1 is a fractional hop length parameter. The walk ter-
minates when a collision or pair dissolution occurs, or when time exceeds a specified upper bound on ~t; tmax. Occasionally,
the first displacement has to be truncated in order to ensure that the difference walker does not leave PD after only one hop:
we simply re-sample the hop again if the initial displacement is too large. In cases when the particles reflect on collisions, we
simply reject the last hop leading to collision. In cases when the particles react on collisions, we take the full length of the last
hop but truncate the last time increment. If instead of collision a pair dissolution event occurs, we reject the last hop rather
than trying to truncate it more accurately (and expensively). In all cases, exit time ~tD ¼ t and location ~rD are recorded for
possible future use. If the time t exceeds tmax, the last time increment is set to Dt0h ¼ t � tmax and the length of the last
hop is scaled by factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt0h=Dth

p
.

If and when the previously scheduled first-passage event actually occurs, we simply move the difference walker to
the pre-sampled exit location rD ¼ ~rD. However, when the scheduled first-passage event is preempted by some other
event, e.g. intrusion of a third party particle, a no-passage propagation is required instead. In such instances, rather than
storing the entire walk generated during pre-sampling, we opt to repeat the same trajectory starting from the same seed
for the pseudo-random number generator. For this purpose we store the random seed for each protected pair when its
next first-passage event is scheduled, and use this seed should it become necessary to repeat the previously sampled
walk.
4. Implementation of the FPKMC algorithm

In this section we give details of various components of the FPKMC algorithm, as we have implemented and tested them.
It is important to note that there are alternative implementation choices, some of which we point to. First, we briefly discuss
computational techniques for searching for near neighbors. We then explain the types of events that are scheduled and pro-
cessed by the FPKMC algorithm, and give a pseudocode for the core of the algorithm, the main event loop. The components
used in the event loop are then briefly described. Finally, we discuss optimization of the efficiency of the algorithm and an
important direction for future improvement.

4.1. Near-neighbor search

Efficient particle-based algorithms use various geometric techniques to reduce to Oð1Þ the cost of searching for the
neighbors of a given particle. Reference [21] provides extensive details and illustrations of these techniques for hard
spheres and ellipsoids; here we briefly summarize the basic linked list cell (LLC) method and describe the more involved
near-neighbor list (NNL) method in Appendix B. In a certain sense the details of these geometric techniques are orthogonal
to the FPKMC algorithm, however, efficient neighbor search plays a very important role in determining the efficiency of the
algorithm. Therefore, it is important to keep in mind how this search is actually performed, especially when constructing
protective regions.

The most basic technique is the so-called linked list cell (LLC) method. The simulation domain, typically an orthogonal
box, is partitioned into Nc cells, typically cubes. Each particle i stores the cell ci to which its centroid belongs, and each cell
c stores a list Lc of all the particles it contains. Given a particle and a search range, the lists of potential neighbors is
determined by scanning through the neighboring cells. Typically, for maximal efficiency the cell should be larger than

A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236 3223
the largest search range, that is, larger than the largest protective region Pi. If some particle grows too large, for example,
due to coalescence reactions, one can enlarge the cells and re-build the associated linked lists. In Section 4.6 we discuss
the impact of cell size on efficiency as well as methods for choosing the optimal cell size in simulations of radiation
damage.

In our FPKMC implementation, in addition to the list of particles Lc , each cell c stores a bitmaskMc consisting of at least Ns

bits (Ns is the number of species). Bit c in the bitmaskMc is set if cell c contains a particle of species c. The bit is set whenever
a particle of species c is added to the cell, and all bitmasks are cleared periodically. When performing a neighbor search for
particle i, cells not containing particles of species that interact with species si are easily found and are simply skipped. This
can significantly speed up the neighbor searches in cases where not all particles interact with all other particles, for example
in simulations of two species diffusion-limited annihilation Aþ B ! 0 where particles of like species do not interact.
4.2. Types of events

The following types of events, as identified by the event partner p and event type m (which we arbitrarily represent with
an integer here), are scheduled and processed in the FPKMC algorithm for a given particle i of species a:

� Particle protection identified by p ¼ 0; m ¼ 1. Such events are scheduled at the beginning for all particles and immediate
updates are scheduled for any particles whose protections are destroyed before the scheduled first-passage time. Process-
ing consists of protecting the particle with a new protective region Pi (see Section 4.5).

� Particle update identified by p ¼ 0; m ¼ 0. A protected particle needs a new event prediction.
� Particle insertion identified by p ¼ 0; m ¼ �1. Processing requires checking whether the newly inserted particle overlaps

with any existing particles. If it does, the corresponding reactions are processed, otherwise, the particle is protected.
� First-passage hop identified by p ¼ i; m < 0. Scheduling consists of sampling an exit time ~t and an exit location ~r from J1.

Processing consists of moving the particle, ti ti þ ~t; ri ri þ ~r, destroying the old protection, and then protecting
the particle again. Additional information, such as the surface of Pi with which the particle collides, can be recorded in m.

� Particle decay identified by p ¼ i; m > 0. The particle decays via the reaction Da
m before leaving its protection. Scheduling

consists of sampling an exponentially-distributed random number with mean
P

kC
a
k

� ��1 and then choosing one of the
reactions m with probability Ca

m=
P

kC
a
k (here the sum is over all single particle decay reactions available for particle i). Pro-

cessing consists of sampling from c1ðr; tÞ and moving the particle, ti ti þ t; ri ri þ r, destroying the protection Pi,
and then executing the selected decay reaction Da

m .
� Hard-wall update identified by p ¼ �w; m ¼ 0, where w is the identifier of the hard wall. A particle-wall pair needs a new

event prediction after it has been protected.
� Hard-wall escape identified by p ¼ �w; m < �1. This event is similar to a first-passage hop, however, JHW is sampled instead

of J1. Additional information such as the surface of Pi with which the particle collides could be recorded in m.
� Hard-wall collision identified by p ¼ �w; m ¼ �1. This event is similar to the hard-wall escape, however, the outcome is a

collision of the particle with the hard wall resulting in annihilation of the particle (a reflection is never explicitly
scheduled).

� Hard-wall decay identified by p ¼ �w; m > 0. The particle decays via the reaction Da
m before colliding with its protection or

the hard wall.
� Pair update identified by p ¼ j; m ¼ 0. A pair needs a new event prediction after it has been protected.
� Pair dissociation identified by p ¼ j; m < �1, where j is the partner particle. Scheduling consists of sampling from

J2ð~t; ~ri; ~rjÞ. Processing consists of moving both particles ti ti þ ~t, ri ri þ ~ri, and tj tj þ ~t; rj rj þ ~rj, destroy-
ing both protections Pi and Pj, scheduling an immediate protection event for particle j, and then protecting particle i
again. The specific meaning of the dissociation event could be recorded in m, e.g. that particle j left its protection or that
the center walker left its protection.

� Pair collision identified by p ¼ j; m ¼ �1. Scheduling consists of sampling from J2ð~t; ~ri; ~rjÞ. Processing consists of executing
reaction Rab, where b is the species of partner particle j.

� Pair decay identified by p ¼ j; m > 0. Particle i decays before the pair disassociates or collides. Processing consists of sam-
pling c2ðri; rj; tÞ and moving both particles accordingly, destroying both protections, scheduling an immediate protection
for particle j, and then processing the decay reaction Da

m for particle i.
4.3. Main event loop

The core of the FPKMC algorithm is the event loop described in Algorithm 1. We have already discussed the general
framework and give here additional technical details to facilitate other implementations of the FPKMC algorithm. For pairs
ij, we only insert one of the particles into the event queue (heap), specifically, minði; jÞ if both are mobile or just the mobile
particle otherwise. Note that whenever the position of a particle is updated, its time is updated as well, ti t, and also the
LLCs and/or NNLs need to updated accordingly.

Algorithm 1. FPKMC event loop. Here n denotes a uniform random number 0 < n < 1. Initially the time of the next particle
insertion tB ¼ �1, and all particles are put in the event queue with te ¼ 0; p ¼ 0; m ¼ 1

1. Find (query) the top of the event heap to find the next particle i to have an event with p at te.
2. If tB < 0, set tB ¼ � lnðnÞ=CB , where CB ¼

PNs
a¼1Ba is the total insertion rate of all particle types.

3. If tB < te, set t tB; tB �1, choose which particle species a is to be inserted with probability Ba=CB (using
linear or binary (tree) search), insert the new particle into the system, and cycle back to step 1.

4. Remove particle i from the event queue, store the time increment Dt ¼ te
i � ti, the event partner p ¼ pi, event type

m ¼ mi, and particle species a ¼ si. Advance the simulation time t te
i .

5. Insertion: If p ¼ 0; m ¼ �1, check if the newly inserted particle overlaps with any existing particle and if so, process
the corresponding reactions. If the particle still exists after the check, set its event to be a regular protection,
p 0; m 1. Otherwise, cycle back to step 1.

6. Single-particle event: If p ¼ i and m – 0, update particle i:
(a) First passage hop: If m < 0, propagate i to its first-passage location, ri ri þ ~r, and destroy its protection Pi. For
spherical particles, one can sample ~r at this point instead of pre-computing it when scheduling first-passage hops
(see Section 3.1).
(b) Decay: Else if m > 0, sample r from cðr; DtÞ, set ri ri þ r, destroy Pi, process the decay reaction Da

m and cycle
back to step 1.

7. Hard-wall event: Else if p ¼ �w < 0 and m – 0, update the particle-wall pair i�w:
(a) First-passage event: If m < 0, propagate particle i to its first-passage time, and update ri and mi if needed. Collision:
If m mi ¼ �1, delete particle i and cycle back to step 1.
(b) Decay: Else if m > 0, sample r from cHW ðr; DtÞ, set ri ri þ r, destroy Pi, process the decay reaction Da

m and
cycle back to step 1.

8. Pair event: Else if p > 0 and p – i and m – 0, update the particle pair ij; j ¼ p; b ¼ sj. Test whether the partner is a
mobile particle, i.e., whether pj ¼ i.
(a) Dissociation: If m < 0, propagate the pair to its first passage time (see Section 3.2), update ri and, if needed, rj and
mi. Destroy protections Pi and Pj.
(b) Collision: If m mi ¼ �1, process the particle–particle collision. If j is immobile, find and un-protect all of its
other partners k (see Section 4.4). Process reaction Rab, scheduling immediate particle insertion events for any
remaining or newly created particles, and cycle back to step 1.
(c) Dissociation: Else if m < 0, schedule an immediate protection for the partner, pj 0; mj 1, and insert j into
the event queue.
(d) Decay: Else if m > 0, sample c2ðrA; rB; DtÞ, set ri ri þ rA and destroy Pi. If j is mobile, set rj rj þ rB, destroy
Pj, schedule an immediate protection for the partner, pj 0; mj 1, and insert j into the event queue. Process
the decay reaction Da

m and cycle back to step 1.
9. If particle i is mobile, build a new protection Pi and find the neighbor k that is limiting the size of the protection.

10. If m – 0 and k is a protected particle, and Pi is too small (see the discussion in Section 2.2), then try to enlarge Pi by
making more room for it:
(a) Destroy Pi and un-protect k.
(b) Build a new protection Pi and find the new limiting neighbor k0.
(c) Set k k0 and cycle back to step 10.

11. Let p ¼ pi (this may have changed during the previous step). If p ¼ i or p ¼ 0 then schedule a new single-particle
event for i:
(a) If Na

d > 0 then sample the time of next decay td ¼ � lnðrÞ=Ca
d , where Ca

d ¼
P

kC
a
k , and find reaction m for whichPm�1

k¼1C
a
k < rCa

d <
Pm

k¼1C
a
k using linear or binary search. Otherwise let td ¼ 1.

(b) If i is protected, sample an exit time ~t and (optionally) an exit location ~r from J1 using td as an upper bound.
Otherwise set ~t ¼ 1.
(c) Choose the smaller of td and ~t and insert i in the event queue with the appropriate event prediction.

12. Else if p > 0 and p – i, schedule a new pair event for ij; j ¼ p; b ¼ sj. If j is mobile, i.e., if pj ¼ i, then set k ¼minði; jÞ,
otherwise set k ¼ i.
(a) Sample a new decay time for particle i; td

i and sample td
j if j is mobile. Set te

k to the time of the first decay reaction,
set mk to the selected decay reaction and set kd ¼ i or kd ¼ j to indicate the decaying particle.
(b) Sample an exit time and location for the pair from J2ð~t; ~ri; ~rjÞ using te

k as an upper bound. If ~t < te
k, change te

k ~t
and change mk appropriately. If needed, store the exit location.
(c) If mk > 0, insert kd into the event queue with the appropriate decay event prediction. If kd – k, delete k from the
event queue.

13. Else if p ¼ �w < 0 then schedule a new event for the particle-wall pair similarly to the case of an immobile partner
in step 12. 14. Cycle back to step 1.

3224 A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236

A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236 3225
4.4. Steps in the algorithm

There are several recurring operations in the FPKMC algorithm that are implemented as separate subroutines in our For-
tran 95 code for which we do not give detailed pseudocodes but list them below with brief notes:

� Inserting a new particle of a given species a. First the position of the particle is sampled from a problem-dependent distri-
bution, and the new particle is inserted into the corresponding cells and/or neighbor lists. The particle is marked as unpro-
tected and an immediate insertion event ðte t; p ¼ 0; m ¼ �1Þ is scheduled for it.

� Protecting a given unprotected particle i. This step is one of the most complex but also critical to the performance of the
algorithm and is discussed in more detail in Section 4.5.

� Un-protecting particle i. The particle i and, potentially, its mobile partner j are brought to the current time using one of the
propagators c1; c2 or cHW , depending on partner type pi. The LLCs are updated accordingly, Pi and potentially Pj are
destroyed, and immediate protection events scheduled for particle i and potentially its partner j.

� Un-protecting all partners of an immobile particle. This is necessary when the state of an immobile particle changes (e.g., it
decays). Immobile particles may have multiple partners, which are not stored explicitly, therefore, the partners of the
immobile particle are first identified by performing a neighbor search for any protective regions Pj that might overlap
with Ci and checking if pj ¼ i. These partners are then unprotected and immediately scheduled for re-protection. Note that
the neighbor search here relies on the LLCs and it is not necessarily safe to modify LLCs until the search completes.

� Scheduling and processing of pair events. The implementation depends on the particle shapes and the types of reactions con-
sidered. Section 3 discusses pair propagators for hard spheres.

� Processing a collision between two particles. This step is very application-specific because of the different types of reactions
that may occur. Typically the processing involves deleting some particles and then possibly inserting others.

� Processing a decay reaction. This is also application-specific and consists of deleting the decaying particle and then insert-
ing the reaction products at desired positions.

� Resetting the time counter to t ¼ 0. This step is useful for minimizing round-off errors, especially before an event generating
other events with very small timestamps occurs. For example, insertions of cascades of defects creates dense lumps of
particles that evolve at time scales Dt comparable to numerical precision ð10�16Þ relative to the time scales of the majority
of events, and thus t þ Dt � t due to round-off. This can be avoided by setting t ¼ 0 after subtracting the current t from all
time counters, including the particle times ti and the event predictions te

i .
� Synchronizing all particles. It is occasionally useful to bring the whole system to the current point in time for analysis, sav-

ing the configuration to a file, etc. This requires un-protecting all particles. This is a good occasion to reset the current time
t 0 to avoid the round-off problems.

4.5. Particle protection

For better performance, one can try to use the freedom afforded by the FPKMC algorithm to select particle protection so as
to delay as far as possible the very next event in the queue. However, finding an optimal space partitioning is a difficult prob-
lem of non-linear optimization, especially since events other than the first-passage and no-passage propagations are taking
place concurrently during the simulation. As described in Section 2.2, Algorithm 1 takes the strategy of first trying to protect
a given seed particle i with the largest possible protection without disturbing other, protected, particles. Then, some of those
other particles may be unprotected to make room and the process is repeated. In this section we describe our procedure for
protecting an unprotected particle. Note that when this procedure is invoked, there can be an arbitrary number of other
unprotected particles.

Our algorithm for protecting a given particle i finds the nearest pair of unprotected particles whose protection affects the
protection of i. It is recursive and rather complex in its details; here we try to give a more intuitive and brief verbal expla-
nation that can be used to design alternative implementations. The algorithm starts from the particle i and finds the maximal
possible size of its protective region by examining all of the neighboring objects limiting the protection and finding the
‘‘nearest” (most-limiting) neighbor and also the ‘‘next-nearest” (next-limiting) neighbor. These neighbors could be other pro-
tected and unprotected particles, nearby hard walls, the cells used to build the LLCs/NNLs, etc. For each of these cases one can
calculate the maximal allowed size of the protection Pi afforded by the neighboring object. Specifically, if the neighboring
object is itself an unprotected particle it is assumed that the particles would be protected with touching protections whose
sizes are proportional to the square roots of the diffusion coefficients. If the limiting neighbor is an unprotected particle, the
algorithm recurses by repeating the process with that particle replacing particle i. The recursion continues until a neighbor is
found whose own limiting neighbor is the particle i, that is, a pair of mutual nearest neighbors i and j is found. If i and j are
sufficiently close and the next-nearest neighbors of i and j allow for pair protection (see Section 3.2), the particles i and j are
protected as a pair. Otherwise, they are protected with touching single-particle protections. The recursion trail is then re-
versed and all the particles visited during the forward recursion are protected with the maximal allowed protection,
accounting for the protection of their nearest neighbor during the forward pass of the recursion and also reusing the previ-
ously-identified next-nearest neighbor. At the end of the process, the particle i and possibly a number of other particles are
protected and the neighbor limiting the size of Pi has been identified.

3226 A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236
4.6. Optimizing runtime parameters for efficiency

The most important parameter defining the performance of the FPKMC algorithm is the size of the cells used for neighbor
searches. The common wisdom for a homogeneous system of identical particles is that, optimally, there should be about one
particle per cell which balances the cost of neighbor searches with the cost of updating the LLCs and moving particles be-
tween the cells. However, this prescription does not necessarily apply to the often heterogeneous (in both time and space)
systems encountered, for example, in radiation damage simulations. Some clusters of defects can grow to sizes more than ten
times larger than monomer defects. Additionally, the system’s evolution can entail disparate timescales differing by many
orders of magnitude, from fast relaxation on the scale of picoseconds during initial cascade insertion to slow annealing
on the scale of years.

For simplicity, the following discussion focuses on LLCs, without NNLs. Furthermore, we assume that among several par-
ticle species present in the system there is a single highly mobile species am, such as interstitials in radiation damage mod-
eling. In such cases, the bulk of computational effort is spent on protecting and propagating particles of the fast species.
Generally, it is a good idea to assign as large protection as possible for the fast particle(s) without, however, having to search
for too many neighbors while building a protective region. In our algorithm the protection size is limited by the smaller of
the following:

1. The range for the neighbor search Rs ¼minðnsLc=2;nsLc � RmaxÞ, where ns ¼ dðRmax þ RpÞ=Lce is the number of neighboring
cells to be searched in each direction, Lc is the linear dimension of the (cubic) cells, Rp is the radius of particle species am,
and Rmax � Rp is the current maximum size of protection in the entire system (typically an immobile cluster).

2. The distance Rv to nearby neighbors against which pair protection is not possible (due to third particles blocking it or the
neighbor being too far away to make pair protection advantageous). This is a measure of the void size around the fastest
particles.

The optimal performance is achieved when the two bounds are approximately equal, Rs � Rv , i.e., the number of searched
neighbors is just enough to find the largest possible protection, no more, no less. The void size Rv can be measured for a given
configuration by gradually enlarging the cells until the average size of protective domains stops increasing, becoming close
to Rv . Numerical tests have confirmed that indeed the choice of Lc such that ns ¼ 1 and Rs � Rv is optimal.

In an actual simulation it is too expensive to estimate Rv at every step but it is still possible to use an adaptive method for
selecting a cell size. Specifically, we monitor how many protections for particles of species am have been limited by cell size
(i.e., by Rs) and how many have been limited by nearby particles (i.e., Rv). We observe that it is best to keep the former a
small but nonzero fraction of the latter. If the runtime statistics show that too many protections are blocked by the cell size,
the cells are enlarged by reducing the number of cells by one along each dimension of the simulation volume. Conversely, the
cell count is increased by one if the statistics show that too few protections are blocked by the cells. The cell size strongly
affects the performance of the code. If too small, the protections will be small too leading to shorter scheduled propagation
times and, thus, slower time evolution. If the cells grow too large, there will be many neighbors to examine during each pro-
tection, slowing down the calculations. The use of NNLs and, in particular, BSCs (see Section B), becomes advantageous when
very large clusters are present, so that ns ¼ 1, i.e., Lc > Rmax þ Rp and the cells contain many smaller particles at sufficiently
high monomer densities. In the simulations of irradiated materials reported in Section 5.2, we focus on low particle densities
and find that the use of NNLs is not necessary to achieve an optimal performance.

Note that computational cost is not always dominated by a single ultra-fast species. As an example, consider the case of
modeling radiation damage inflicted in the form of defect pairs consisting of a very mobile interstitial and a much less mobile
vacancy. At first, the interstitial propagation events will dominate the event loop and the interstitials will quickly diffuse to
absorbing sinks, such as hard-wall boundaries or nearby vacancies, and disappear. This will leave behind the slower vacan-
cies that will continue their random motion until the next defect pair is inserted. If the insertion rate is low, the vacancies can
move significantly between successive insertions and after the fast interstitials all died out. During such intervals the com-
putational cost is dominated by vacancy propagations and protections. In such conditions, the focus of particle protection
will have to shift from interstitials to vacancies and back to interstitials. In general, the choice of optimal cells and protection
sizes is complex and problem-dependent. Our implementation of the FPKMC algorithm collects statistics that can be used to
make runtime adjustments and improve the simulation performance.

4.7. Mixing time-driven with event-driven propagations

Under certain conditions the exact event-driven handling of particle diffusion may become inefficient and/or cumber-
some. For example, in a dense group of closely spaced particles, protection of single particles and pairs is severely limited
by the third particles in close proximity. In such conditions, particle displacements can become too small to deserve asyn-
chronous event-driven handling. Time-stepping avoids the cost of event queue operations and simplifies overlap detection.
Therefore, it can be more efficient to use time-stepping for dense groups of particles, similar to the time-driven hopping algo-
rithm presented in Section 3.2.2 that avoids the use of complex pair propagators for spheres. Use of small hops is also advan-
tageous when particles or surfaces (e.g., grain boundaries) have complex shapes making analytical treatment of particle
diffusion and collisions difficult or impossible. Yet another example when simple time stepping is useful is tightly-bound

A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236 3227
collections of particles (clusters) that may act as a single particle and have complex internal structure and dynamics (relax-
ation). Adding a time-driven component to the asynchronous event-driven FPKMC algorithm allows us to retain the overall
algorithm efficiency even in such difficult conditions.

The particles that cannot be protected by a sufficiently large protection are marked as time-driven particles and are not
inserted into the event queue. A special type of event, a time step event, is introduced and always scheduled to occur at equal
time intervals Dt. When a time-step event is processed, all time-driven particles are moved simultaneously, followed by
overlap checks and reactions, if any are detected. Particles that are time-driven are not protected against each other, instead,
they can stay unprotected or are protected only against the event-driven particles. Time-driven particles whose protections
overlap form a cluster and are propagated synchronously with the same time step Dt tailored to the fastest particle in the
cluster. For simplicity, all time-driven particles may be treated as one cluster with a single global Dt. However, it is often the
case that different species have widely differing diffusion coefficients and therefore very different time-steps will be appro-
priate for different species. To solve this problem, one can use the n-fold (BKL) [17] synchronous event-driven algorithm in-
side each cluster and replace the time step events with BKL hop events. At each hop event all particles of a single species move
by a small but non-negligible distance while all other particles remain in place. This way, the more mobile particles move
more frequently (with correct relative frequencies) than the less mobile ones.

Note that the particles in such a time-driven cluster can take hops up to the time of the next event in the queue, since it is
known that the hops cannot be preempted by another event. In some situations this may improve efficiency by reducing the
number of heap operations and also increasing the memory access locality of the code by focusing multiple events on the
same (cached) small group of particles. We are currently developing an implementation of a mixed event-driven (first-pas-
sage) with time-driven (n-fold KMC) algorithm and will report additional details and results in a future publication.
5. Validation and results

In this section we apply the FPKMC algorithm to several diffusion–reaction problems of increasing complexity. To validate
the new algorithm and to demonstrate its efficiency, we compare our simulations to results obtained using two different
object KMC (OKMC) codes developed earlier for simulations of continuum diffusion (BIGMAC code [4]) and for simulations
of random walks on a lattice (LAKIMOCA code [5]). Presented in Section 5.1, the first two test problems are relatively simple
validation studies for the case of two-species annihilation, Aþ B ! 0, when the two species have different diffusion coef-
ficients. FPKMC simulations for this model are compared against results obtained with the BIGMAC code. In Section 5.2.1, we
apply FPKMC to a more challenging test problem of damage accumulation in a metal thin film subjected to electron irradi-
ation. We base our FPKMC simulations on a well known model of a-iron studied earlier using three different methods,
including cluster dynamics, lattice OKMC, and the approximate continuum OKMC algorithm JERK [13]. Here we compare
our results for this model against simulations performed using the LAKIMOCA lattice-based code. Finally, in Section 5.2.3
we apply FPKMC to simulations of radiation damage accumulation over previously inaccessible time scales, namely, to time
intervals and radiation doses characteristic of material lifetimes in a nuclear reactor. To our knowledge, this is the first time
an atomistic model has reached technologically relevant radiation doses exceeding the previous simulation benchmarks by
several orders of magnitude.
5.1. Two-species annihilation

As a validation study, let us first consider a system of spherical particles of two species A or B in three dimensions. The
particles of different species have different radii RA and RB and different diffusion coefficients DA and DB;DB < DA. Particles of
like species do not see each other but particles of unlike species annihilate upon hard-sphere contact, i.e. at the annihilation
distance rAþB!0 ¼ RA þ RB. As a base for comparison, we first simulated the same model reaction using the BIGMAC code for
several values of the hop distance D, characterized hereafter by the dimensionless ratio d ¼ D=ðRA þ RBÞ. For the hopping-
based pair propagators in FPKMC we set d ¼ 0:1, which was found to be sufficiently small to give accurate results, yet large
enough to make the pair propagators almost as efficient as the analytical pair propagators for cube-shaped particles.

The simulations were performed in a cubic simulation domain of volume L3 with periodic boundary conditions. In the
simulations reported here, half of the particles are of species A and the other half are of species B. We consider two different
initial conditions. In the first case As and Bs are randomly and uniformly distributed in the simulation volume (the overlap-
ping particles of unlike species are removed). The reaction kinetics is described by the reduction of the number of A (or B)
particles with time, NAðtÞ ¼ NBðtÞ. Fig. 2 shows this decay kinetics for FPKMC simulations as well as for BIGMAC runs with
different hop sizes d. The results indicate that hop sizes as large as d ¼ 1=4 can be used in BIGMAC without a noticeable error
and that BIGMAC and FPKMC produce virtually indistinguishable results.

In the second test case, one half of the box ðx P L=2Þ is randomly filled with A’s and the other half ðx < L=2Þ with B’s. The
resulting NAðtÞ ¼ NBðtÞ is shown in Fig. 2, with similar qualitative behavior as in the first case of intermixed As and Bs. The
concentration profiles cAðx; tÞ and cBðx; tÞ are shown for several different points in time in Fig. 2 for both FPKMC and BIGMAC
with hop size d ¼ 1=4 revealing an excellent agreement between the two algorithms. The efficiency of BIGMAC simulations is
proportional to the square of the hop size, but even for the rather large hop sizes used in our BIGMAC simulations, the latter

10
-10

10
-9

10
-8

10
-7

10
-6

Time (s)

0

1×10
4

2×10
4

3×10
4

4×10
4

5×10
4

N
um

be
r

of
 A

’s

BIGMAC δ=1
BIGMAC δ=1/2
BIGMAC δ=1/4
BIGMAC δ=1/8
FPKMC (εh=0.1)

10
-10

10
-9

10
-8

10
-7

10
-610

1

10
2

10
3

10
4

10
-10

10
-9

10
-8

10
-7

10
-6

1×10
4

2×10
4

3×10
4

4×10
4

5×10
4

6×10
4

7×10
4

10
-10

10
-9

10
-8

10
-7

10
-6

Time (s)

10
2

10
3

10
4

10
5

N
um

be
r

of
 A

’s

BIGMAC δ=1
BIGMAC δ=1/4
BIGMAC δ=1/8
FPKMC

0 5 10 15 20 25 30 35 40
Depth (nm)

0.0

5.0×10
20

1.0×10
21

1.5×10
21

2.0×10
21

C
on

ce
nt

ra
tio

n
(c

m
-3

)

 BIGMAC (A’s)
 BIGMAC (B’s)

 FPKMC (t=2.0 10
-8

)

 FPKMC (t=3.5 10
-8

)

 FPKMC (t=6.0 10
-8

)

 FPKMC (t=9.9 10
-8

)

Fig. 2. Comparison between BIGMAC and FPKMC for the two-species annihilation ðAþ B ! 0Þ test problem in three dimensions, starting from a
uniformly-mixed (top left) and phase-separated (top right and bottom) initial state. The two top panels and their insets show the number of particles as a
function on time, NAðtÞ ¼ NBðtÞ, using log-log and semi-log scales. The bottom panel shows the particle concentration profiles cAðx; tÞ (solid curves for
BIGMAC, circles for FPKMC) and cBðx; tÞ (dashed curves for BIGMAC, squares for FPKMC) for the phase-separated initial conditions. Concentration profiles
taken at several times during the simulation are plotted in different colors. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

3228 A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236
take several hours to annihilate most of the initial 1:28	 105 particles, whereas the FPKMC code accomplishes the same in
about 10 minutes on a typical single-processor desktop machine essentially independently of the value of d.
5.2. Radiation damage

Modeling of radiation damage in reactor materials is not only another test problem for our algorithm but also a techno-
logically important application, notably in the design and maintenance of nuclear power plants. When a metal is irradiated,
incoming high energy particles (neutrons, ions, electrons) collide with atoms of the host crystal lattice inducing displace-
ment cascades and producing numerous defects, such as excess vacancies and interstitials. Many of these defects quickly
annihilate each other, but some diffuse from the initial impact locations, eventually finding other defects to react with
and to form defect clusters. The cluster density and sizes can grow over time resulting in substantial (most often detrimen-
tal) modifications of material microstructure and properties. The atomistic KMC method is well suited for simulations of
radiation damage accumulation by tracing the numerous diffusive hops and reactions among crystal defects induced by col-
lision cascades. Unfortunately, the same detailed nature of KMC simulations makes them computationally demanding and
limits their time horizon to times far shorter than the technologically relevant time scales (years).

The FPKMC algorithm seems to be perfect for simulations of materials under irradiation and, in fact, it was this particular
application that served as an initial inspiration for the new method development. The advantage of FPKMC over other KMC

A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236 3229
methods is that the new algorithm handles equally efficiently both the fast stages of cascade annealing when the density of
diffusing defects is high and the slow evolution of the small number of surviving defects that continue their diffusive motion
during the intervals between subsequent collision cascades. This intermittent (fast–slow–fast-. . .) character of system’s evo-
lution is the major computational challenge in radiation damage simulations that the asynchronous FPKMC algorithm
addresses.

To enable radiation damage simulations, several particle species are introduced: monomers, including highly-mobile
interstitials ðIÞ and less-mobile vacancies ðVÞ, a number of mobile cluster species, for example, dimers (I2 and V2) and trimers
(I3 and V3), immobile species representing clusters larger than any of the mobile species (Ic and Vc), and defect (Frenkel)
pairs ðIVÞ. Each particle is assigned a hard-sphere radius: for the clusters the radius is related to the number of monomers
c P 1 contained in the clusters assuming that the monomer volumes are additive, i.e. Rc
 R0 þ ðR1 � R0Þc1=3.

Frenkel pairs ðIVÞ are inserted in the simulation volume at a specified birth rate and instantly (i.e., with decay time
sIV ¼ 0) decay via IV ! I þ V . The resulting interstitial and vacancy monomers are placed randomly within the simulation
0 20 40 60 80 100 120
Time (s)

0

1000

2000

3000

4000

5000

N
um

be
r

of
 m

on
om

er
s

Vacancies in monomers (FPKMC)
Vs in dimers (FPKMC)
Vs in trimers (FPKMC)
Vs in tetramers (FPKMC)
Interstitals in clusters (FPKMC)
Vs in monomers (OKMC)
Vs in dimers (OKMC)
Vs in trimers (OKMC)
Vs in tetramers (OKMC)
Is in clusters (OKMC)

0 20 40 60 80 100 120
0

200

400

600

0 500 1000 1500 2000

Atomic plane

0

0.5

1

1.5

2

2.5

3

3.5

4

Sw
el

lin
g

 (
10

-4
)

FPKMC mono-vacancies
OKMC mono-vacancies
FPKMC clustered vacancies
OKMC clustered vacancies
FPKMC interstitials
OKMC interstitials

Fig. 3. Comparison between FPKMC (symbols) and LAKIMOCA [5] (lines) simulations of a 0.287 lm-thick film of a-iron subjected to 120 s of electron
radiation at a temperature T ¼ 200 �C. The results shown on the plots are obtained by averaging over 50 runs. (Top) The time evolution of the total number
of mono-vacancies, small vacancy clusters and interstitials (in clusters). The statistical error bars are comparable to the symbol sizes. The inset shows a
different scale to focus on the smaller clusters. (Bottom) The density profile along the thickness of the film for all vacancies (in monomers and clusters),
mono-vacancies, vacancies in clusters and all interstitials (in monomers and clusters) at the end of 120 s of simulated irradiation. The error bars are
comparable to the symbol sizes, except for the interstitials for which the statistics is poor.

3230 A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236
box, either at some initial distance from each other or completely independently of each other. Electron irradiation creates
individual Frenkel pairs while irradiation by high-energy ions or neutrons creates damage in the form of displacement cas-
cades producing compact collections of monomers and clusters, each cascade containing about 100 Frenkel pairs. The colli-
sion cascades are randomly selected from a library of cascade configurations generated in Molecular Dynamics simulations
and the cascade locations and orientations are sampled from appropriate distributions.

Upon collisions, particles of like species coalesce, for example, I þ I ! I2 or V þ V3 ! Vc¼4, whereas collisions of par-
ticles of unlike species lead to complete or partial annihilation, for example, I2 þ Vc¼4 ! V2. In our current implementation,
the distance at which two particles collide must be equal to the sum of their radii since the FPKMC algorithm handles the
geometry of the protective regions assuming that an additive hard-sphere interactions among the particles. For consistency,
the same is assumed in simulations performed with the lattice-based LAKIMOCA code that are used here for comparison. To
imitate the stronger effect of elastic strain on the interstitials (the bias), the interstitials are assigned radius 1.2 times larger
than that of the vacancies.

The defect clusters emit monomers at a given rate, represented as a decay reaction, for example, Vc¼5 ! Vc¼4 þ V , or
I2 ! I þ I. The emitted monomer is placed at a preset emission distance de from the cluster surface, in a random direction.
This is at variance with most other commonly adopted non-local emission rules, e.g. in the mean-field Cluster Rate Theory
method [22], in which the monomers are emitted from the clusters to ‘‘infinity”. If and when a cluster shrinks by emission to
a size at which it becomes mobile, the species of the remaining cluster is changed accordingly, for example, Vc¼4 ! V3 þ V .

The rates of defect diffusion and monomer emission from the clusters are calculated according to the standard expres-
sions for the rates of thermally activated rate processes in solids. Defect migration and binding energies needed to compute
the rates are calculated atomistically, e.g. from first-principles theory, or estimated from experimental data. In the simple
model we consider here, only the monomers are mobile, with a diffusion coefficient
Table 1
Perform
radiatio
accelera
means
changes

Dose

1:5	
1:5	
1:5	
1:5	
1:5	
1:5	
D1 ¼ D0e�Em=kT ;
where Em is the activation energy for defect migration (lattice hop). The rate of emission of monomers from a cluster com-
posed of c monomers is
Cc ¼ C0D1a�2c2=3e�EbðcÞ=kT ;
where a is the lattice spacing, C0 is a constant that depends on the lattice type and EbðcÞ is the monomer binding energy in a
cluster of size c, estimated using
EbðcÞ ¼ Ef þ ½Ebð2Þ � Ef �
c2=3 � ðc � 1Þ2=3

22=3 � 1
;

where Ef is the monomer formation energy [13].

5.2.1. Thin film of metal under electron irradiation
As a test problem, here we consider a model previously studied in Ref. [13] using two other KMC algorithms and the

mean-field cluster dynamics [22]. The model system is a 0.287 lm-thick film of a-iron subjected to electron radiation. Peri-
odic boundary conditions are used in the x and y directions, while absorbing walls are used in the z direction. Further details
of the model are given in Ref. [13] and will not be repeated here. We made a few minor changes to the model parameters
presented in Ref. [13], notably switching from the non-local to local emission of monomers from the clusters. Here we com-
pare our FPKMC simulations with new results obtained using the LAKIMOCA code [5].

In pure iron, the interstitials are much more mobile than the vacancies which results in their rapid absorption at the free
surfaces or annihilation with the vacancies. Due to this very high monomer mobility, very few if any interstitial clusters
form. However, the ones that do nucleate, can grow rather large because the binding energy of interstitials in the clusters
is rather high. A large fraction of computational effort is therefore expended on propagating the interstitials. However,
ance of the FPKMC algorithm in simulations of a 0.287 lm-thick film of a-iron at T = 473 K subjected to different fluxes (dose rates) of electron
n. Conditions typical of nuclear reactors correspond to dose rates on the order of 10�8dpa=s and lifetimes from years to several decades, while in the
ted irradiation facilities the dose rates can be on the order of 10�4dpa=s and the tests can last for several hours or days. A displacement dose of K-dpa

that, on average, each atom has been displaced from its equilibrium lattice position K times due to incoming radiation. Note that simulation efficiency
over the course of one simulation so that the overall efficiencies reported in the last column are representative averages.

rate (dpa/s) Total dose (dpa) Simulated time Speed (s/cpus) Efficiency (dpa/cpuday)

10�4 18 33 h 0.14 1.8

10�5 2.9 54 h 1.3 1.7

10�6 4.1 31 days 13 1.6

10�7 1.6 125 days 150 2.0

10�8 10 21 years 2:1	 103 2.7

10�9 8.4 175 years 2:3	 104 3.0

A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236 3231
depending on the irradiation rate (fluence), the vacancies may have time to move significantly between successive insertions
of Frenkel pairs. Here we present a high-fluence case studied computationally and experimentally in Ref. [13]. Further com-
putational tests of the FPKMC code in a wide range of irradiation conditions will be discussed in Section 5.2.2.

A comparison of the simulated time evolution for the number of defects, as well as their spatial distribution at the end of
120 s of irradiation, is shown in Fig. 3. Generally, we observe a good agreement between FPKMC and LAKIMOCA results
although the number of accumulated defects is slightly smaller in the FPKMC simulations than in the LAKIMOCA runs. This
is perhaps a consequence of different treatment of defect diffusion in the two methods: in FPKMC the defects move by con-
tinuous diffusion whereas in LAKIMOCA the defects walk on a lattice. However, at sufficiently low densities, lattice discrete-
ness is not as important and the effective reaction and emission rates are well matched between the discrete and continuum
models. Further comparisons between FPKMC and OKMC simulations will be given in a future publication, here we simply
observe the ability of the FPKMC algorithm to correctly simulate radiation damage by comparing it to a standard OKMC. Each
FPKMC simulation sample used for obtaining the data plotted in Fig. 3 has taken less than 5 min to complete on a modest
workstation (a 3.4 GHz Xeon 64-bit processor). Efficiency of FPKMC simulations is further discussed in the next section.
5.2.2. Performance
For a large number of particles N, the computational complexity of the FPKMC algorithm per event should be order

Oðlog NÞwhich is the cost of event queue updates. For a typical value of N ¼ 105, the logarithm is masked by other dominant
costs that are all constant (e.g., neighbor searches and sampling from the propagators). Computational tests in the range of N
from 104 to 106 have indeed verified that the cost of FPKMC simulations scales linearly with the number of particles.

The FPKMC code performance also depends on a number of other parameters, e.g. particle density, the disparity of diffu-
sion and emission rates, differences in particles sizes between the different species, etc. These and other factors and their
interactions affect the overall performance in complex ways that are yet to be fully examined. We defer to future applica-
tions to study the subtle effects of various model parameters on the method’s performance. Here we present a few figures on
the performance of our FPKMC code for the same simple model of metal thin film described in Section 5.2, as a function of
irradiation flux measured in the units of displacements per atom ðdpaÞ per second ðdpa=sÞ. The kinetics of defect microstruc-
ture evolution and, in particular, the amount and character of accumulated damage depend sensitively on flux and temper-
ature. For example, the defect density (accumulated damage) increases with the increasing flux and/or the decreasing
temperature. It is therefore not a priori obvious that FPKMC will be equally effective in dealing with a wide range of fluxes
and temperatures. A reasonable measure of the algorithm performance is the damage dose simulated over a unit of CPU time
expressed for example, in the unit of dose simulated in one day of computing (dpa/cpuday).
Fig. 4. State of damage in a thin a-Fe film irradiated by electrons to the total dose of 10 dpa: (Top right) At the high dose rate of 1.5 	 10�4 dpa/s and
T = 262 �C and (Bottom right) At the low dose rate of 1.5 	 10�8 dpa/s and T = 130 �C. (Left) Volume fraction of vacancies (swelling) as a function of damage
dose. The vacancy fraction was obtained by counting together all vacancies in the simulation volume, both in the vacancy monomers or vacancy clusters,
and dividing the sum by the total number of atomic sites. The black solid curve is the swelling kinetics under the high dose rate/high temperature and the
dashed red curve is the same kinetics under the low dose rate/low temperature irradiation conditions. Both curves were obtained by averaging over 10
independent simulation runs for each irradiation condition, and the vertical bars show the estimated statistical errors. The inset in the bottom figure shows
a histogram of the distribution of vacancy cluster sizes at a dose of 5 dpa for both the high dose rate/high temperature irradiation (shaded gray bars) and for
the low dose rate/low temperature irradiation (red bars). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

3232 A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236
The figures presented in Table 1 demonstrate that, with the use of optimization techniques discussed in Section 4.6, the
algorithm performance remains nearly constant across several decades of radiation flux. This highly desirable property de-
rives from the ability of our asynchronous event-driven algorithm to deal with very large differences in event rates and local
densities. We observe that, in the course of a single simulation, the FPKMC algorithm self-adjusts to the current conditions of
spatial and temporal heterogeneity without much intervention or parameter tuning.
5.2.3. Radiation damage on reactor timescales
Future development of nuclear energy demands materials that can withstand harsh conditions of particle irradiation, high

temperature, mechanical stress and active chemical agents over tens of years. The only fully reliable method to evaluate the
potential of a candidate material is to subject it to conditions relevant for the future reactor designs. However, such an ap-
proach is not practical given that the relevant environment can be achieved only after the reactor is already built. Further-
more, even if an appropriate material testing facility were to exist, testing the candidate materials over the intervals of 50 or
100 years would not be practical.

The idea of accelerated material testing is to subject candidate materials to conditions even harsher than in the reactor but
over shorter periods of times, such as a few hours or days, in the hope that the observed (accelerated) material degradation
can be used as a predictor of the performance of the same material during its lifetime in a real reactor. The premise of accel-
erated materials testing is that materials theory and numerical simulations can provide a reliable connection between the
accelerated tests and the material lifetime performance predictions. To serve this purpose, material simulations should meet
two conditions. First, accurate material models need to be developed and validated against experimental measurements.
Second, the simulation algorithms need to be efficient to enable computational predictions of materials performance under
reactor conditions. The performance data presented in Table 1 suggests that FPKMC can meet this second challenge. Here we
continue to focus on the thin-film model studied in Section 5.2 and use our FPKMC code to simulate damage accumulation at
two different dose rates, a high dose rate of 1:5	 10�4 dpa=s typical of accelerated experiments in material testing facilities
such as JANNUS [23], and a low dose rate of 1:5	 10�8 dpa=s typical of the existing nuclear reactors. We ran both simula-
tions to a total dose of 10 dpa, which required several CPU days per sample on a common workstation.

Direct comparison of two simulations performed at the same temperature T ¼ 200 �C revealed very different kinetics and
end-of-dose damage, which is not surprising given that much more time is available for damage annealing (healing) at the
slow (reactor) time scales. In order to enable scaling from high dose rates to low dose rates, it was proposed [24] to raise the
temperature in the high dose rate irradiation test so as to preserve the ratio of the damage insertion rate to the rate of defect
diffusion. Such scaling would be exact if there were only one evolution mechanism whose rate can be adjusted by changing
the temperature. However, even in the simple model of a-iron considered here, there is a whole spectrum of mechanisms
and associated rates with different temperature activation parameters. One can only hope that an approximate scaling
can be achieved by adjusting the rate of just one dominant mechanism that controls the overall rate of damage accumula-
tion. In an extensive series of numerical experiments we observed that, within the simple model considered here, the overall
rate and character of damage evolution appears to be controlled by the ratio of vacancy diffusion to the irradiation dose rate.
This is likely because, at all temperatures of interest here, the interstitials are much more mobile than the vacancies and dis-
appear nearly instantly following the insertion of a Frenkel pair, leaving the less mobile vacancies to diffuse and cluster in the
absence of interstitials.

Fig. 4 compares the state of damage reached at T ¼ 262 �C and high dose rate, with that reached at T ¼ 130 �C at low dose
rate. The kinetics of damage accumulation and the resulting populations of voids are similar to each other but the scaling is
only approximate and some differences in the resulting microstructures are noticeable. Most visibly, a few large interstitial
clusters form at the high dose rate where the time interval between successive Frenkel-pair insertions is comparable to the
lifetime of inserted interstitials. On the contrary, at the lower dose rate the newly inserted interstitials disappear (at the free
surfaces or through annihilation with the vacancies) well before the next Frenkel pair is inserted. Additionally, as seen from
the histograms shown in the insert, the average size of the vacancy clusters is larger at the higher dose rate. The approximate
agreement in the overall swelling supports the idea that it may be possible to compensate the enhanced rate of damage accu-
mulation in accelerated tests by raising the test temperature so that the resulting damage is approximately the same as in
the reactor but at a lower temperature. That the scaling is only approximate is less than surprising considering that multiple
rate processes, each with its own temperature dependence, act together to produce the resulting damage kinetics.
6. Conclusions

We have described an asynchronous event-driven algorithm for diffusion kinetic Monte Carlo simulations of diffusion–
reaction particle systems, based on the First Passage Kinetic Monte Carlo method first proposed in Ref. [10] and described
in more detail in Ref. [11]. The First Passage Kinetic Monte Carlo (FPKMC) algorithm avoids long sequences of small diffusive
hops commonly used to bring particles to collisions, by enabling large super-hops sampled from exact (semi)analytical solu-
tions for diffusion Green’s functions (propagators) in spatially isolated protective regions each containing just one or two
particles. The FPKMC algorithm is exact to the extent that the system’s stochastic trajectory is sampled from the exact
diffusion–reaction Master Equation for the N-particle system, to within the accuracy of the single- and two-body Green’s

A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236 3233
functions. At the same time, for a range of simulations reported here and in Ref. [11], the new algorithm is several orders of
magnitude more efficient than the existing (approximate) hopping-based algorithms.

In this work we extended the FPKMC method to considerably more complex simulations in which particle diffusion is just
one among many competing processes. We described generalizations and algorithmic components necessary to handle sys-
tems with multiple particle species and multiple reactions, including annihilation, clustering, emission, and particle birth
and death. We focused on the case of hard spheres that are more appropriate than cubes for a multitude of intended appli-
cations. Handling hard sphere collisions as a first-passage process turned out to be more complicated than the case of cubes
which necessitated a hopping-based approximation for the pair propagators. The resulting solution to the sphere collision
problem was found practical and efficient but raised a more general issue of combining the asynchronous event-driven
framework employed in FPKMC with the more traditional synchronous time-driven simulations. Our successful implemen-
tation of time-driven pair propagators in FPKMC points to hybrid time-driven/event-driven algorithms as a promising direc-
tion for future research.

The new implementation of the FPKMC algorithm has proven suitable for simulations of damage accumulation in mate-
rials subjected to irradiation by high-energy particles. The accuracy of the FPKMC algorithm and our implementation was
validated on several test problems by comparison to traditional (object) KMC algorithms developed for diffusion–reaction
simulations in the continuum (BIGMAC) and on the lattice (LAKIMOCA). The new algorithm is shown to perform well in a
wide range of radiation conditions enabling, for the first time, simulations of irradiated materials to large technologically
relevant radiation doses (e.g., 10 dpa) on a serial workstation. Closing the gap between the short time horizon of traditional
KMC simulations and long material life in the reactor required to gain several orders of magnitude in computational effi-
ciency. In FPKMC, this gain is achieved entirely through an exact factorization of the difficult N-body reaction-diffusion prob-
lem into one- and two-body problems.

With its efficiency, the new FPKMC method can make a significant impact on the important area of accelerated material
testing for next-generation nuclear reactor designs. There is a strong synergy between atomistic KMC simulations and exper-
iments carried out in accelerated testing facilities. The accuracy of an atomistic KMC model can be improved by expanding
its mechanism catalog and obtaining more accurate values of model parameters. For this purpose, computationally efficient
KMC simulations can be used to explore and identify experimental conditions in which accelerated material tests would be
most informative for model validation, e.g. most sensitive to a particular mechanism or model parameter. Furthermore, the
same simulations can be used to fine-tune the KMC models for conditions typical of real reactors. The approximate scaling
predicted in our FPKMC simulations provides exactly the right kind of connection between simulations and experiments.
Once the accuracy of the material models is established, FPKMC simulations can be used to extrapolate from accelerated
material tests into relevant but inaccessible conditions of nuclear reactors without relying on any approximate scaling. To
quantify the reliability of such computational extrapolations, FPKMC simulations can be used to assess the uncertainties
in computational predictions of accumulated damage given the uncertainties in model parameters, similarly to what is rou-
tinely done in climate modeling. Ultimately, efficient KMC simulations can and should become an integral component of reli-
able material testing programs.

In addition to allowing reactor material simulations on technologically-relevant time-scales, the new method may prove
enabling in other areas of science, in engineering and in finance. One particularly attractive application for the new method is
in cell biology, where multiple reaction-diffusion mechanisms conspire to produce a wide variety of specific biological re-
sponses [25]. The FPKMC algorithm should perform well in heterogeneous environments, e.g. in the porous zeolites or in
the cell cytoplasm. However, in cases when geometric constraints result in particle crowding, the effective time step in a
FPKMC simulation can become very short making it difficult to reach the long time dynamics.
Acknowledgments

We would like to thank Christophe Domain, Pär Olsson, and Charlotte Becquart for helpful discussions and sharing with
us their OKMC simulation data. We would also like to thank Mihai-Cosmin Marinica for testing our FPKMC code extensively
and Maria-Jose Caturla for sharing with us her library of collision cascades. This work was performed under the auspices of
the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work
was supported by the Office of Laboratory Directed Research at LLNL and the Office of Basic Energy Sciences US Department
of Energy.
Appendix A. Sampling the single-sphere propagators

The solution to the diffusion problem inside a sphere with absorbing boundaries cðr; tÞ can only be represented in closed-
form in the Laplace domain and thus one must resort to rapidly-converging series solutions, as given in Eqs. (4) and (5) for
short and long times, respectively. As explained in more detail in Ref. [11], efficient rejection sampling of such distributions
can be performed by truncating the series if the truncated series can be augmented with an upper and lower bound on the
true distribution, tighter and tighter as more terms are added to the series. For example, estimates of the absolute value of
the remainder in the truncated series can be used to provide bounds.

3234 A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236
Randomly sampled points can be rejected if they are above the upper bound or accepted if they are below the lower
bound, or, if neither, the next term added to the series to compute tighter bounds. With rapidly converging series and tight
bound estimates, typically only a few of the leading terms in the series need to be computed while still providing exact sam-
pling of the target distribution. In Ref. [11], series for the various bounds were given for the case of a point particle diffusing
with diffusion coefficient D ¼ 1 inside a one dimensional interval of length one (starting from the center). Here we give the
corresponding three dimensional results, i.e., the case of a point diffusing inside a unit three dimensional sphere (starting
from the center).

A.1. First-passage propagator

Integration of cðr; tÞ over the unit sphere yields the survival probability in two infinite series forms, a short time series
SðtÞ ¼ Sn!1ðtÞ; ðA1Þ
where
Sn ¼ ð2pt3Þ�
1
2
Xn

m¼�n�1

2mþ ð1þ 2mÞ2

2t

" #
exp �ð1þ 2mÞ2

4t

" #
;

and a long time series
SðtÞ ¼ �2p2
X1
m¼1

ð�1Þmm2e�m2p2t: ðA2Þ
We select a switchover time s between the short- and long-time series such that 1=p2
6 s 6 1=4 and use the piecewise

smooth function CðtÞ as an over-estimator for the survival probability at all times,
CðtÞ ¼
SðsÞ
SsðsÞ SsðtÞ for t < s;
SlðtÞ for t > s;

(

where SsðtÞ ¼ 1
t � 2
� �

e�
1
4t=

ffiffiffiffiffiffiffiffiffiffiffi
2pt3
p

and SlðtÞ ¼ 2p2e�p2t are the leading terms of the short- and long-time series for the survival
probability. A sample exit time t is obtained by solving CðtÞ ¼ n, where n is random number uniformly distributed in [0,1).
Solving this equation for t < s can be done efficiently by Newton iteration. To obtain the sequence of converging lower and
upper bounds necessary for rejection sampling, note that the terms of the long-time series alternate in sign and decrease in
magnitude with increasing m and can themselves serve as the needed bounds. For the short-time series we can bound the
remainder RnðtÞ ¼ SðtÞ � SnðtÞ with
0 6 RnðtÞ 6 ð4pt3Þ�
1
2
ð1þ 2mÞ2

t
� 1þ 2m

" #
exp �ð1þ 2mÞ2

4t

" #
:

In our implementation we use s ¼ 0:243, which gives a rejection ratio of about 0.6%. The maximum relative error in the sur-
vival probability is CðtÞ=SðtÞ � 1 � 7	 10�3, so that CðtÞ is an acceptable approximation for SðtÞ without rejection sampling.

A.2. No-passage propagator

To enable efficient rejection sampling, we need a tight over-estimator Cðr; tÞ for the no-passage probability distribution
c1ðr; tÞ at arbitrary time t. Here we construct such a function by stitching together two different expressions appropriate for
times shorter and longer than a switchover time sð1=p2

6 s 6 1=4Þ. For times t < s the leading term ðm ¼ 0Þ in the short-
time series solution (1) is a reasonable over-estimator:
Csðr; tÞ ¼ ð4ptÞ�
3
2e�

r2
4t :
On the other hand, for times t > s a good over-estimator is given by
Clðr; tÞ ¼ sin pr
2r

e�p2t þ 1
p2t

1þ 1
4p2t

� �
e�4p2t

� 	
:

Sampling from Csðr; tÞ entails evaluation of one inverse error function while sampling from Clðr; tÞ requires solving for r
the following equation:
1
p

sin pr � r cos pr ¼ n;
where n is a random number uniformly distributed on [0,1). The solution can be found by Newton iteration using
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3n=p23

p
as a starting guess if n 6 1=2 and r ¼ 1� 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� nÞ

p
if n > 1=2.

A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236 3235
The same two series solutions can be used to obtain a sequence of increasingly tight bounds on the no-passage distribu-
tion. For short times, we approximate cðr; tÞ with the partial sum
cmðr; tÞ ¼
Xm

k¼�m

1þ 2k
r

� �
exp �ðr þ 2mÞ2

4t

" #
;

and use the following lower and upper bounds for the remainder term, Rl 6 cðr; tÞ � cmðr; tÞ 6 Ru,
Rl ¼ 1� 2
mþ 1þ t

r

� �
exp �ðr � 2m� 2Þ2

4t

" #
þ 2t

r
exp �ðr þ 2mþ 2Þ

4t

� 	
;

Ru ¼ 1þ 2
mþ 1þ t

r

� �
exp �ðr þ 2mþ 2Þ2

4t

" #
þ 2t

r
exp �ðr � 2m� 2Þ

4t

� 	
;

For long times, tight lower and upper bounds on the no-passage probability distribution are obtained from the following
bound for the magnitude of the remainder
4pr2
X1

k¼mþ1

k
2r

sinðkprÞe�m2p2t

 6 2prðmþ 1Þ þ r

pt

h i
e�ðmþ1Þ2p2t :
Appendix B. Near-neighbor list (NNL) method

The near-neighbor list (NNL) method [21] is a neighbor search technique that is superior to the linked list cell method in
conditions where particles do not change neighbors over many events. The essential idea is to enclose every protective re-
gion Pi inside a bounding neighborhoodN i, Pi � N i. This bounding neighborhood is fixed while the particle and its protection
change as the particle moves around, until the particle comes close to the boundary of N i at which point a new N i is con-
structed. In principle, one can treat the boundary of N i as a first-passage surface, however we simply rebuild the bounding
neighborhood whenever the particle comes close to its boundary.

The linked list NNLðiÞ lists all other neighborhoods that intersect neighborhood N i (hard walls or other boundaries may
also be near neighbors). This is used to identify potential interactions of particle i and can be reused until the particle core Ci

approaches the boundary of N i. This results in significant savings of computational effort if particle motion is localized and
the particles experience numerous displacements before leaving their bounding neighborhood. Note that the LLC method is
still used to build N i and NNLðiÞ which keeps the maximal cost of pairwise searches at OðNÞ instead of OðN2Þ. In our imple-
mentation N i is build as a sphere concentric with the particle and with the diameter larger than 2lRi but smaller than the
cell size, where l > 1 is a parameter.

Even the NNL method can become inefficient when some particles are much larger than others, e.g. large clusters formed
by coalescence of defects in radiation damage modeling. In such cases, if the cells are still maintained larger than the size of
the largest particle, the same cells may contain many small particles making the search for near neighbors expensive. On the
other hand, if the cells are kept reasonably small, neighbor searches need to examine many small cells in order to account for
all near neighbors of the large particles. The idea of the bounding sphere complexes (BSCs) [21] method is to use small cells but
to cover N i with a collection of NBSC spheres, each smaller than the cell size. The so-constructed sphere complex remains
immobile until N i changes, which would occur infrequently if the large particles move slowly or are immobile. The small
spheres forming BSCs are inserted in the LLCs and near neighbors of each large particle are found by searching for the near
neighbors of each constituent small sphere in the corresponding BCS.

References

[1] M. Strobel, K.-H. Heinig, W. Möller, Three-dimensional domain growth on the size scale of the capillary length: effective growth exponent and
comparative atomistic and mean-field simulations, Phys. Rev. B 64 (24) (2001) 245422.

[2] J.S. Reese, S. Raimondeau, D.G. Vlachos, Monte Carlo algorithms for complex surface reaction mechanisms: efficiency and accuracy, J. Comput. Phys.
173 (1) (2001) 302–321.

[3] M. Biehl, Lattice gas models and kinetic monte carlo simulations of epitaxial growth, in: A. Voigt (Ed.), International Series of Numerical Mathematics,
vol. 149, Birkhaeuser, 2005, pp. 3–18.

[4] S.K. Theiss, M.-J. Caturla, M.D. Johnson, J. Zhu, T.J. Lenosky, B. Sadigh, T. Diaz de la Rubia, Atomic scale models of ion implantation and dopant diffusion
in silico, Thin Solid Films 365 (2000) 219–230.

[5] C. Domain, C.S. Becquart, L. Malerba, Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach, J. Nucl. Mater. 335 (1) (2004)
121–145.

[6] D.P. Tolle, N. Le Novere, Particle-based stochastic simulation in systems biology, Curr. Bioinformat. 1 (3) (2006) 315–320.
[7] J.S. van Zon, P.R. ten Wolde, Green’s-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space, J.

Chem. Phys. 123 (23) (2005) 234910.
[8] S.J. Plimpton, A. Slepoy, Microbial cell modeling via reacting diffusive particles, J. Phys.: Conf. Ser. 16 (2005) 305–309.
[9] M.H. Kalos, D. Levesque, L. Verlet, Helium at zero temperature with hard-sphere and other forces, Phys. Rev. A 9 (5) (1974) 2178–2195.

[10] T. Oppelstrup, V.V. Bulatov, G.H. Gilmer, M.H. Kalos, B. Sadigh, First-passage Monte Carlo algorithm: diffusion without all the hops, Phys. Rev. Lett. 97
(23) (2006) 230602.

[11] T. Oppelstrup, V.V. Bulatov, A. Donev, M.H. Kalos, G.H. Gilmer, B. Sadigh, First-passage kinetic Monte Carlo method, Phys. Rev. E 80 (6) (2009) 066701.
Available from: <arXiv:0905.3575>.

3236 A. Donev et al. / Journal of Computational Physics 229 (2010) 3214–3236
[12] J. Dalla Torre, J.-L. Bocquet, N.V. Doan, E. Adam, A. Barbu, JERK, an event-based kinetic Monte Carlo model to predict microstructure evolution of
materials under irradiation, Philos. Mag. 85 (2005) 549–558.

[13] A. Barbu, C.S. Becquart, J.L. Bocquet, J. Dalla Torre, C. Domain, comparison between three complementary approaches to simulate large-fluence
irradiation: application to electron irradiation of thin foils, Philos. Mag. 85 (2005) 541–547.

[14] A. Donev, Asynchronous event-driven particle algorithms, SIMULATION: Transactions of the Society for Modeling and Simulation International 85 (4)
(2008) 229–242.

[15] B.J. Alder, T.E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys. 31 (1959) 459–466.
[16] A. Scala, T. Voigtmann, C. De Michele, Event-driven Brownian dynamics for hard spheres, J. Chem. Phys. 126 (13) (2007) 134109.
[17] A.B. Bortz, M.H. Kalos, J.L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems, J. Comput. Phys. 17 (1) (1975) 10–18.
[18] S. Redner, A Guide to First-passage Processes, Cambridge University Press, Cambridge, 2001.
[19] J.A. Given, J.B. Hubbard, J.F. Douglas, A first-passage algorithm for the hydrodynamic friction and diffusion-limited reaction rate of macromolecules, J.

Chem. Phys. 106 (9) (1997) 3761–3771.
[20] C.-O. Hwang, J.A. Given, M. Mascagni, The simulation-tabulation method for classical diffusion Monte Carlo, J. Comput. Phys. 174 (2001) 925–946.
[21] A. Donev, S. Torquato, F.H. Stillinger, Neighbor list collision-driven molecular dynamics simulation for nonspherical particles: I. Algorithmic details II.

Applications to ellipses and ellipsoids, J. Comput. Phys. 202 (2) (2005) 737–764. 765–793.
[22] A. Barbu, E. Clouet, Cluster dynamics modeling of materials: advantages and limitations, Solid State Phenom. 129 (2007) 51.
[23] Y. Serruys, M.O. Ruault, P. Trocellier, S. Miro, A. Barbu, L. Boulanger, O. Kaı̈tasov, S. Henry, O. Leseigneur, P. Trouslard, et al, JANNUS: experimental

validation at the scale of atomic modelling, Compt. Rendus-Phys. 9 (3–4) (2008) 437–444.
[24] M.J. Caturla, T. Diaz de la Rubia, M. Fluss, Modeling microstructure evolution of fcc metals under irradiation in the presence of He, J. Nucl. Mater. 323

(2–3) (2003) 163–168.
[25] S.S. Andrews, D. Bray, Stochastic simulation of chemical reactions with spatial resolution and single molecule detail, Phys. Biol. 1 (3) (2004) 137–151.

	A First-Passage Kinetic Monte Carlo algorithm for complex diffusion–reaction systems
	Introduction
	Model representation
	Asynchronous event-driven algorithms

	The First-Passage Kinetic Monte Carlo algorithm
	First-passage probability densities
	Pair propagators
	Hard-wall propagators

	Summary of the FPKMC algorithm

	Single particle and pair propagators
	Single particle propagators
	Pair propagators
	The difference and center propagators
	Hopping-based propagators

	Implementation of the FPKMC algorithm
	Near-neighbor search
	Types of events
	Main event loop
	Steps in the algorithm
	Particle protection
	Optimizing runtime parameters for efficiency
	Mixing time-driven with event-driven propagations

	Validation and results
	Two-species annihilation
	Radiation damage
	Thin film of metal under electron irradiation
	Performance
	Radiation damage on reactor timescales

	Conclusions
	Acknowledgments
	Sampling the single-sphere propagators
	First-passage propagator
	No-passage propagator

	Near-neighbor list (NNL) method
	References

